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Nonlinear propagation of disturbances is examined in reacting mixtures where 
the change of composition is determined by the course of a single chemical 

reaction. Depending on the relationship between macroscopic time and relax- 
ation time, we distinguish two basic types of processes: quasi-frozen and quasi- 
equilibrium. Media are examined also, in which the frozen and equilibrium 

speeds of sound are nearly equal in magnitude. Solutions are constructed for 

asymptotic equations which describe the flow parameters behind shock fronts 

and in expansion waves. A mathematical analogy is formulated for the effect 
of rates of chemical reactions, the effect of “longitudinal viscosity”, and the 

effect of thermal conductivity on the structure of the perturbed field. 

1, Initial cqurrfoIlt. It will be assumed that in the flow of chemically active 
gas mixture only one reaction takes place. The change in the composition of the mixture 

is then characterized by a single parameter 9 which is called completeness of reaction. 

The equations of motion of the mixture are taken in the form [l] 

Here t is the time, r is the distance from the plane, axis or center of symmetry, u 
is the velocity, p is the density, p is the pressure, s is the specific entropy, 2 is the 

temperature, Q and Q are the rate and affinity of chemical reaction. The parameter 
V =2 1, 2, 3 for flows with a plane, axis or center of symmetry, respectively. 

In order to close the system it is necessary to introduce three additional equations 
which connect therm~ynamic functions p, p, pI s. 0 and According to the Gibbs 

relationship the increase in specific internal energy e is 
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de=Qdq-pdV+ Tds, V=l/p 

The first partial derivatives 

ac ~=e,=(f-), I, -p=ee,= m Q s, T=eS=($),,v ( 1, 
expressed through q, V and s represent equations of state of the medium. They serve 
as the three missing relationships between thermodvnamic quantities. 

It is known [l] that at equilibrium state Q = q’ = 0. Let us select q, V and Q as 

independent thermodynamic variables. If we assume analytical dependence of Q’ on 

Q, then near the equilibrium state we have 

Q’ = --H, (q, v) Q + HA, UQ' + --. (1.2) 

From the second law of thermodynamics for irreversible processes it follows that the co- 
efficient H, > 0. 

The third equation of system (1.1) follows from the law of conservation of energy and 
is transformed into two alternate forms. In the first case we express the increase of spec- 

ific entropy through the increase in completeness of chemical reaction and the increase 
in density and pressure 

Here af is the frozen speed of sound. It follows from (1.3) that 

Combination of the obtained relationship with equations of continuity and conservation 

of momentum gives 

g + (u + a,) g + put [$ + (u + at) g + (v - 1) F] = Lf tw 
For the derivation of the second alternative form which follows from the law of con- 

servation of energy we take as independent thermodynamic variables the affinity of 

chemical reaction, the density and pressure. In analogy to the previous case we obtain 

Equations (1.5) and (1.6) are two different but exact forms of notation which express 
the consequences of the law of conservation of energy. They are analogous to the rela- 
tionship which is used in the flow theory of inert gases [‘2] and transform into this relat- 

ionship for Q= (8~ / %d,,8 = (2~ / a@,,, =O. In this case the operators LI and Le bec- 

ome identically zero and both speeds of sound at and a, coincide with the propagation 

speed of small disturbances. 
The following identity is differentiated with respect to p 
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P (Q, I’3 4 = P Iq (Q, P, 4, P? sl 

Taking into consideration the definitions for frozen and equilibrium speeds of sound, we 

have 
at2 - a, ’ = -(~P/aq)p,s(aqiap)Q,s (1.7) 

In accordance with the relationship of Gibbs we have 

( 1 
8P i?e 

F p, s = - ( ) aqw 8 = - Cl29 ($$,,:, = (33. = %2 

#)v..= (g&=e~l 

Substituting these quantities into Eq. (1.7), we find 

a,a-- ue L_L+-j - (1.8) 
The inequality sign in (1.8) is determined by the requirement of thermodynamic stability 

of the system. The equilibrium speed of sound can reach the value of the frozen speed 

of sound only for the condition er2 = 0. 

2. A:ymptotio expan:iona. Let us now proceed to the examination of limit 

modes of disturbance propagation, taking advantage of expansion of unknown functions 

in series with respect to several independent small parameters. 

It is known [l, 21 that in relaxing mixtures the transmission of signals is accompanied 

by dispersion. Moreover, the speed of this transmission in limiting cases coincides either 

with the frozen, or with the equilibrium speed of sound. The first case is realized when 

the macroscopic time is much smaller than the time for chemical reaction. The second 

case corresponds to a process in which the macroscopic time significantly exceeds the 

time for relaxation. Furthermore, special consideration must be given to media with 

nearly equal values for both speeds of sound. 

Let us assume that the values of all characteristics of the gas mixture at any time and 

in each point of space deviate little from the corresponding values in the state of rest 

which represents the state of complete thermodynamic equilibrium. The unperturbed 

quantities will be denoted by the subscript zero. 

We introduce a system of coordinates which moves either with the frozen or the equi- 

libirium speed of sound in the quiescent medium. The characteristic length in this system 

is denoted by L We assume that the flow which is examined in the relaxing medium 

represents a short wave, i.e. the width of the region where the disturbances are concen- 

trated is small in comparison to the disturbances to which the wave propagates. Then 

the independent variables are 

t “Lt’, 
Aao 

r = a,t + Lr’ (2.1) 

Here A is the small parameter. 

With respect to perturbations of the completeness of reaction, the density, pressure 

and other thermodynamic quantities it is assumed that they are of the same order as the 

mass velocity of particles which is proportional to the second small parameter a. Pass- 

ing to dimensionless unknown functions, we have 
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v = 8UoV’, C7 = qo (1 + ?I’), P = PO (1 + V’), P = PO (1 + 4) 
s = so (1 + es’), T=T,(i+eT’), Q=8$Q’ (2.2) 

at = ad + 8aj’), a, = ab (1 + ea,‘) 

As far as the chemical reaction rate is concerned, we have 

q’ = apb 
TQ 

‘J (2.3) 

Here ‘C is the characteristic time for the reaction of components of the mixture. 
It is recalled that the speed a, of wave motion in the quiescent medium coincides 

either with the frozen speed ajo, or the equilibrium speed up0 of propagation of sound 

signals. 

Substituting Eqs. (2.1) and expansions (2.2) into the initial system of equations (1.1) 
and taking into account relationships (1.2) and (2.3), an additional numerical parameter 

appears 
N, = L / ~a, 

In the derivation of asymptotic equations in all cases only the principal terms will 
be retained. 

3. Oursi-froaen proceaa. It is assumed that the frozen and the equilibrium 
speeds of sound in the quiescent medium differ by a finite amount. The short wave which 

is examined moves, by definition, with a velocity a0 = alo and has a narrow perturbed 
zone. The prime above dimensionless quantities is subsequently omitted. 

After linearization the integration of the first two equations of system (1.1) leads to 
the following equations 

f’=$p=U (3.4) 

The first of these equations expresses the fact that in the approximation which is exam- 
ined here, the compression of the gas takes place reversibly and with constant compos- 

ition of the reacting mixture. According to the second equation the Riemann relation- 
ship which characterizes a plane running sound impulse in an inert gas @] applies to the 
entire flow. 

By virtue of smallness of the affinity of chemical reaction we obtain from the third 

equation of system (1.1) 
s=o (3.2) 

This supports the conclusion about the reversible character of gas compression. 
We write the general expression for the deviation of pressure from its equilibrium 

value in a quiescent medium, taking as independent thermodynamic parameters the 
completeness of chemical reaction, the density and entropy 

POP = PPid!?O)P, S 404 -t PO&P -t PPi~~Oh?*P ~%_I~ (3.3) 

Here by virtue of (3.2) the last term in the right side disappears. For the presented re- 
lationship to coincide with the first equation (3.1). it is necessary to satisfy the requi- 
rement q = 0 which was formulated above. This leads to the condition iy,. G.: 1. In 

fact, retaining only the principal terms in the fourth equation of system (1.1). we find 
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aq / ar = -N, q (3.4) 

For N, < 1 it follows from here that CI = 0. 
The derivation of relationships (3.1) was based on the introduction of the small para- 

meter A into the definition of dimensionless time. It follows from the analysis which 

was performed that in the quasi-frozen mode of disturbance propagation such a substit- 
ution is justified only under the condition that the macroscopic time L / a,, is much 

smaller than the time z for the chemical reaction. 
The presence of the relaxation process is distinctly apparent in the derivation of the 

last asymptotic equation which makes it possible to establish the dependence of velocity 
on time and the coordinate. With this purpose we turn to Eq. (1.5). In the approximation 
which is examined here 

Let us compare the definitions (1; 2) and (2.3) for the rate of chemical reaction. It is 
clear that 

H,=; !G!$; 

Here Ht’ is a dimensionless function of the order of unity. 
operator L,, we find 

Recalling Eq. (1.4) for the 

Depending on the relative value of small parameters E, A and N,we can distinguish 
different cases which are encountered in the investigation of the quasi-frozen mode of 
propagation of disturbances. Without dwelling on these cases in detail, it is noted that 

for N,. 4 E - A we can neglect the term in the right side of (3.5). As a result an equa- 

tion is obtained which defines the flow of an inert gas. 
If all terms in Eq. (3.5) are of the same order, then assuming 

we can reduce Eq. (3.5) to the form 

The general solution of (3.6) is written in the form 

(3.6) 

where f is an arbitrary function. The obtained solution allows to formulate basic con- 
clusions of qualitative nature with respect to the quasi-frozen mode of disturbance pro- 

pagation. 
In continuous flows along any characteristic 
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the velocity u decays according to the following law 

v-i! 
-b-1ua 

e-' 

This law was predicted by geometrical acoustics p, 41, in the framework of which all 
nonlinear effects are ignored. For t -+ 00 it follows from relationship (3.7) that r + 
-+ Con.% In other words, all characteristic lines tend to straight lines parallel to the 

time axis. 
Let us examine as an example the plane centered wave which is formed at the instant 

of time t = 0 in the point with the coordinate r = 0 

VIt=s= 
{ 

0 for r>i 

-220 for r <0 (3.8) 

In this case v = i and z = -e- t. Satisfying the initial condition we find that for -2a 

(i - e-‘) ( r < 0 the function f = U. Hence 

u = r (d - i)l (3.9) 

For r > 0 the solution is trivial: v = 0. For r < -20 (I- @) we have v = -2ue-‘, 
For small values of t the Eq. (3.9) gives in the first approximation v = r / tD As we 
know p], this equation describes a centered Riemann wave propagating in an inert gas. 

Let the flow now have a discontinuity. In the initial dimensional variables the velo- 

city N for the propagation of a weak shock wave is given by the relationship 

Denoting the coordinate of discontinuity by r, and the value of the function u immed- 

iately behind the discontinuity through’ uI, we derive on the basis of Eqs. (2.1). (2.2) 

and (3.1) 
dr, I dz = ‘jzu, (3.10) 

In order to obtain the necessary solution of equation (3.6). we assume again v= 1 
and substitute in the initial condition (3.8) the value -2a by +2~. Then ahead of the 
shock front u = 0 and behind the shock front u = 2a. The location of the discontinuity 
is determined by the solution of Eq. (3.10). As a result 

r8 =a(i-- e-l) (3.11) 

In this manner for t --, 00 the shock wave degenerates into an unperturbed characteristic. 
Even in the case where in the initial instant behind the discontinuity there is an infinite 

region with a constant excess pressure, the amplitude of this pressure rapidly becomes 

zero. 
Let us examine the general problem (Y = 1,2,3) of decay of a shock wave, behind 

the front of which the excess pressure decreases to zero. The change of mixture param- 
eters in the expansion flow depends on the form of function f. The value of U, for diff- 
erent instants is found from the solution of the ordinary differential equation which foll- 

ows from (3.10) 

(3.12) 
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In the asymptotic theory of shock wave decay in an inert gas it is established [S. 61 that 
the distribution of velocity behind the surface of discontinuity changes linearly with re- 
spect to the coordinate, i.e. df / du = T,,. Let us also preserve this law for the relax- 

ing mixture, even though in the case which is under examination the asymptotic beha- 
vior of flow parameters for the expansion flow depends to a high degree on initial data. 

For df / du = -co we have from Eq. (3.12) 

u, = c (r + ZJ”‘, rs = C (Z + To)“’ c = const (3.13) 

For example, at the initial instant t = 0 there is a plane wave with the value ~1~ =- 
- Zo for the velocity on the shock front, and with the width h, of the perturbed region. 

Then the constants z,, = 1 + h,, (20)-l and c = 1/Z&o. Utilizing the second equation 
(3.13), we find that in the limit for t - 00 the width of the perturbed region h, I 

= &1/l + 2c/J.0 increases with respect to the initial width by only a few times. For small 
values of the ratio 20 / A0 the final coordinate of the shock front is rS = 0’. It is clear 

that this value is also obtained from Eq. (3.11). 

4. Qurri-equilibrium proce:s,Let us assume that the velocity of motion of the 
short wave which is being examined, in the quiescent medium is equal to the equilibrium 

speed of sound. After linearization of Euler’s continuity equations we obtain again Eqs. 

(3.1) with the only difference that the quantity at, should be replaced by a,,. In 

other words, in the process under consideration the compression of the gas is accomplished 

reversibly and for a constant value of affinity of chemical reaction. 
As independent thermodynamic variables we select the chemical affinity, the density 

and specific entropy. The deviation of pressure from the equilibrium value is 

The last term in the right side of this relationship disappears by virtue of (3. ‘2). For 
the change of pressure to take place at a constant value of affinity of chemical reaction, 

it is now also necessary to convert the first term to zero. This requirement leads to the 
condition N, > 1. In fact, it is evident from (3.4) that for .iV, > 1 it is necessary 
to set q’ = 0. Equation (1.2) shows that together with q’ the chemical affinity Q = 0. 
The obtained results can be summarized in the following manner: in the investigation 
of the quasi-equilibrium mode of propagation of disturbances in a relaxing medium the 
introduction of the small parameter b in the definition of dimensionless time is permi- 
ssible under the condition that the macroscopic time L / a,, is significantly greater 

than the time z for the chemical reaction. 
Let us turn to Eq. (1.6) and derive the missing relationship which is satisfied by the 

velocity of gas particles. The increase in equilibrium sound velocity is 

aae ( 1 A- P = ho - 1) p, 
1 @P 

a, = aP, Q,s aeo mea= To_ av,g Q * ( 1, 
Therefore the simplification of the left part of Eq. (1.6) is carried out in a manner which 

is completely analogous to Sect. 3. 
For Q = s = 0 we have 

Z.Lp 
Q.8 q0 
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Utilizing the last relationship, we derive 

2ern,,v $ + A 12 $ + (Y - i) +] = (4;2) 

As was shown above, for the quasi-frozen mode the presence of the relaxation process 

provides an input to the asymptotic equation. This input is proportional to the function 
Y The change of composition of the reacting mixture in the quasi-equilibrium mode 

is taken into account with the aid of the second derivative of this function 8% I ar2. The 
indicated difference has a simple mathematical character. In the first case the small 

parameter’iv, in the initial conditions of Euler stands with unknown functions. In the 

second case LV,-i plays the role of the small parameter and it is multiplied here by a 

combination of derivatives of function q. 
In problems of nonlinear acoustics, Eq. (4.2) was encountered in the analysis of inert 

gas flow with viscosity and thermal conductivity. On the basis of this equation, general 

results were obtained which apply to the decay of plane shock waves in dissipative media 
p]. The role of this equation is also noted in the review article [8]. Cylindrically and 
spherically symmetric shock waves were examined in [9]. let us introduce into the ana- 
lysis the Reynolds and P&let numbers 

NRel= y , NR~?= y , PclWPo~ 

” 
NP~= k 

0 

and the dimensionless thermodynamic coefficient 

m. = 1/ape-3 aom2 (d2p/6Voa)s 

which in the expansion for the speed of sound in an inert gas plays the same role as mtO 
and m,,. Here h, and & are the first and second coefficients of viscosity, k is the 
coefficient of thermal conductivity, cp is the specific heat at constant pressure, ‘X is 
the Poisson isentropic exponent. 

The equations which were studied in [7 - 91 agree completely with (4.2) if in the 

latter a substitution of coefficients is made according to the following rule: 

1 
me0 -+ rno, N, qoaPoa,oaHlo P0 (igJ,,.(-$),.s--&++~) (4.3) 

Here the total Reynolds number NRe = (413N~e,A1 + NR,,-‘)-’ is connected with the 
so-called “longitudinal viscosity”. The Prandtl number Npr is equal to the ratio of 

P&let number Npe to Reynolds number NRe. From this an exact mathematical analogy 

follows between processes which are being examined. According to this analogy the 

effect of chemical reactions on quasi-equilibrium propagation of sound impulses is equi- 
valent to the effect of longitudinal viscosity and thermal conductivity on the structure 
of these impulses. 

Another formulation of the analogy between viscous and relaxing flows is widely known. 
As was pointed out by the authors of [lo] and [ll] in phenomena of sound propagation 
the process of chemical reactions formally plays the same role as is fulfilled by’the 

second viscosity which is defined by the coefficient &. They pointed out the equivalence 
of corresponding expressions for deviation of pressure from its equilibrium value. These 
expressions in both cases are proport ional to the divergence of velocity. In the investig- 
ation of nonlinear motion of short waves it is preferable to formulate the analogy in 
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terms of the longitudinal viscosity and thermal conductivity. It was established recently 
1121 that the comparison of stationary transonic flows with flows of inert gas in the tran- 

sonic range of velocities is also based on a substitution of the type (4.3). 
If all terms in Eq. (4.2) ale of the same order, then assuming 

2wn,,=2A=-$- qzp;zH 
f 0 0 eo 10 i%),,.(Z),.. 

it is possible to reduce this equation to the following form 

let us examine the propagation of plane waves with v = 1. In this case the transform- 
ation l7, 81 

2 aY 
v=-Far 

reduces (4.4) to the equation of thermal conductivity. 
let the Cauchy problem (3.8) be formulated for Eq, (4.4). Then we obtain as initial 

data for the function \y 

I1 for r > 0 
y It=0 = \ ear for r < 0 

(4.5) 

Using the Poisson integral, the solution of the thermal conductivity equation can be 
written in the form 

The computation of asymptotic properties of the solution for t -+ 00 is of greatest inte- 

rest. It is apparent that for any ray with a positive slope in the rt plane the initial 

value y = 1 does not change in the first approximation; it follows that U = 0. On 

rays With a slope of less than - 20 the velocity u acquires its initial value (3.8), even 
though the function Y differs from (4.5). If 

r = - 2r.t, @<%<a (4.7) 

then the evaluation of the principal part of integrals which appear in Eq. (4.6) gives 

Y’ 
5 -X?f 

2 I/ZU(G-a) 
e 

It follows from this that for a --+ U and a -+ o there is a singularity in the solution. 
Returning to the initial variables we obtain u = - 2o. The latter equation defines a 
Riemann wave in the theory of one-dimensional inert gas flow [2]. In fact, this equation 
shows that along each of straight lines (4:7) the velocity. retains a constant value which 
corresponds to the slope of this straight line. 

In this manner, in the case of long times the relaxation process does not have a signi- 

ficant influence on the basic part of the flow. Properties of the perturbed velocity field 

depend to a great degree on the presence of a chemical reaction only in the vicinity of 
the front and the tail of the wave the width of which increases with time as v/t. 

Near the front of the wave we assume 
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r==2pV’t (4.8) 

A simple estimate shows that in the right side of relationship (4.6) we can neglect the 
second term inside the brackets. As a result we have for the velocity 

u=- 
l/Z [i :, erf (8)] e-P’ 

According to Eq. (4.9) the decay of disturbances ahead of the wave front takes place in 
agreement with the exponential law. Behind the wave front for fi + - 00 we have 

v=zp il/tt i. e. the solution which is being examined gives the distribution of gas 
parameters in the Riemann wave with a constant value of velocity on rays in the rt - 

plane. 

The character of behavior of disturbances in the vicinity of the tail of the wave is 
established in an analogous manner, Here 

r=-_ 2at + 2py-t 

In this region in the first approximation we have 

(4.10) 

The relationship (4.10) shows that behind the shock front the velocity approaches expo- 
nentially its limiting value - 20. In the region ahead of the front for 13 -+ + 00 we 
find u = - 2a + 28 f -C/a t i.e. the change of velocity obeys the laws for simple 
waves. 

Let us compare the formulated solution of equation (4.4) with the solution which was 
obtained within the framework of acoustics [13]. The fundamental difference here is 
that in the linear theory the fan of straight lines with a coustant value of valocity along 

each of these lines is absent. At the same time the influence of the relaxation process 

which produces a diffusion of the boundaries of the perturbed region accofding to Eqs. 

(4.9) and (4. lo), is taken into account correctly by this theory. From this it is clear 
that acoustics predict the growth of the width of the perturbed zone as fc 

In the conditions of Cauchy (3.8) let us now replace the value - 20 by -+.. 2o, In 
order to utilize previous results, it is sufficient to introduce the minus sign in front of 
the constant CT in Eqs. (4.5) and (4.6). bet us elucidate the limit properties of the sol- 

ution for t -+ ~3. In the rt -plane along any ray for which the slope is greater than 
2~~ the initial value Y = 1 is preserved in the first approximation, i.e. u - 0, On 

all rays with a negative slope the velocity u is equal to its initial value (3.8) regardless 

of differences in the initial and current values of the function v. If we write t = &-J$ 

(0 < a < o), then, retaining in Eq. (4.6) only the principal terms, we have Y = 

=l+e ( --O r-aO for any o. It foIlows from this that 

v = 5 - L5tJ.i q tr - at) 
2 (4.11f 

This solution describes the structure of a weak shock wave moving with the velocity o. 
It was first found by Taylor [143 in the study of flow of a viscous and heat conducting 

gas. 
Let us examine the region in which 
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(4.12) 

Here in the first approximation 

U=Q[1 - erf(/-j)j fp+2q3 V'T 

For large positive values of P we obtain 

v=* e-(“v’+p)’ 

Let the coordinate r now be given by Eg, (4.8). Then 

v = 26 - a [l + erf (@)] e**t+aaptiT 

For large negative values of j3 we derive 

(4.13) 

(4.14) 

Equations (4.13) and (4.14) show that the limit values of velocity ahead and behind the 
shock wavr. are reached very rapidly, because the exponent contains in addition to P 

also.the time t. It is easy to verify that the solutions for regions where the coordinate 
is given by equations (4.8) or (4.12) transform into Taylor’s solution (4.11). In the first 

case it is necessary to take the parameter p to the limit -CZQ, in the second case to 

-t-00. 

6, Media wfth nearly equal rpscd, of sound, Let us recallequation 
(1.8) which determines the difference between the squares of frozen and equilibrium 
speeds of sound. If their values in the medium at rest are nearly equal, then the thermo- 

dynamic derivative 

e120 
PO ’ 

= %x e120 

where a, is a new small parameter, e’ia, is a dimensionless quantity of the order of 
unity. The necessity for investigation of media of this type was first noted in [IS]. 

From the last equation of system (l,l), which gives the rate for the relaxation process, 
it is evident that the perturbed completeness of reaction is proportional to the product 

F8, l The functions Q and q’ must also be proprtional to this product. Therefore, in 
the transition to dimensioniess variables and the subsequent simplification of equations 
of motion for the mixture, it is necessary in relationships (2.2) and (2.3) to make the 
substitution 

(I’ --z &a$, Q’ --+ E, (I’, Q” -> F&J.) 

As a result we have 

As for all dimensionless quantities, the prime above cizU was left out here. Both values 
for the speed of sound a.t, and C(,O are nearly equal, tberefore we can drop the assum- 
ption that the velocity ‘I, of wave motion necessarily coincides with one of them. We 
assume according to relationship (1.8) 
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a0 - =jn = ec2=ocsf,, a0 - a,, = ea2aob,d (5.2) 

The constants cr,e and oeO are apparently of the order of unity. 
The first two equations of the initial system (1.1) do not contain functions Q and Q 

The linearization of these functions leads again to Eq. (3.1) with the substitution of 

afo by =e . It is evident that Eq. (3.2) for the entropy increase is also valid in the 
case of special media which is being investigated, A more accurate evaluation shows 
that s - &&,a. 

Let us consider expansions (3.3) and (4.1) which give the deviation of pressure from 

the equilibrium value in the quiescent medium. The thermodynamic derivative has the 

form 
SF 

( ) 

VP i a&, s. 

-@- p,s - @Q/W,,, 

Therefore, with accuracy to quantities of the order of a,2 both expansions coincide with 
the first of Eqs, (3.1). In this case the dimensionless parameter i1:, remains arbitrary. 

Equation (3.4) for the rate of chemical reaction is presented in the form 

(5.3) 

For the derivation of the missing relationship we take advantage again of alternate forms 
of (1.5) and (1.8) which follow from the law of conservation of energy. If the difference 
between the velocity a0 of wave motion and the frozen sound speed a,, is taken into 
account, then the first of the equations gives 

2 (E'nf,U - &&,) ~+A[~~+(Y-~)+]=E~~$$$+ (Z.4) 

In a completely analogous manner, taking into account the difference between aa 

and GO, we derive from the second alternate form 

Equations (5.4) and (5.5) must coincide with each other. 
To become conviced of this, we first of all note the equality mfo = QO = mO which 

is satisfied with accuracy to 8, 2. Recalling further the definition (5.2) of constants ofa 
and (leol we find 

Substituting now expressions (5.1) for Q into the right side of equation (5.5), we bring 
it to the form (5.4). Eliminating from equations (5.3) and (5.4) the thermodynamic 
function g, we arrive at an equation of the second order which contains only the pertur- 
bed particle velocity of the mixture 
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In the limiting cases Eq. (5.6) transforms into (3.5) or (4.2). 
Let a,, = ajo, N, -) 0 and eaPNr - e. Discarding minor terms in Eq. (5.6) and in- 

tegrating the resulting relationship, we obtain Eq. (3.5) for ajo + a,,. 

Let us examine the other possibility when a0 = a,., N,.-1 + 0 and 3,s N,-l- 8. In this 

case we obtain Eqs. (4.2), in the right side of which only the principal term is retained 
for the condition up - am0 

The minor parameters are subjected to the following relationships: 

2 2 

em, = A = e,,2 PO e120 

q0%Pe~~0ao~ 

We introduce the notation 

%q2 660 
Q=Tmo’ l = b qi~po~~loIflo r 

Changing to the new unknown function v - c = U, we write Eq. (5.6) as 

~~+?K++z+ z~(z++~++~j++~ 

The obtained equation is applied to the description of internal structure of shock waves. 
For this purpose let us examine its solution for v = 1 , which is independent of time. 
For completely dispersed waves without discontinuities we have after a single integration 

The arbitrary constant is determined here from the condition that u + - U for r --t M. 
If the wave is not completely dispersed, the region of perturbations is bounded by the 
front. In the transition through the front the completeness of reaction is preserved and 

the velocity experiences a jump. Nevertheless, relationship (5.7) retains its validity 

for discontinuous motions of a relaxing medium. 
In order to become convinced of this, we write the foIlowing equation in the initial 

variables 
P = -@ - PO) / (V - V,) 

This equation gives the mass flux f in a system of coordinates which moves with the 
front of the wave. Equation (5.8) is well known in the theory of shock waves c2]. but 

it can also be applied in the investigation of continuous flows. Let us expand the presstie 
in a series in which we select as independent variables the completeness of chemical 

reaction, the specific volume and entropy. We retain terms not only of the first order, 

but also of the second order of smallness. After transition to dimensionless quantities 
we find 

pop = - ea3p0420q 
1 2 Pp 

--~ato2V+2epoa m o,r V3 ( 1 
If we take into account that the flux 1 = -pOaO, then substitution of the expansion 
into the right side of (5.8) gives the following relationship between the functions 4 and 

u in any point of the perturbed region: 
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It is essential to note that the presence of this rela~o~~p does not depend on whether 
both functions which are being examined are continuous or contain discontinuities which 

correspond to a shock front with a coordinate r = r,. Substituting v by u, we have 

qo*PoGllo 
poelao 

q=us+u-csa+(s (W 

As a result of substitution of this equation into the right side of Eq, (5.3) we obtain re- 
lationship (5.7). i. e, the statement formulated above is proven. This indicates that 
expression (5.9) is an exact integral of Eq, (5.3). 

On the shock front the completeness of reaction does not change. It follows from this 
that 

U,===O- 1 (5.10) 

We can obtain the last equation in a different way. From the equation which gives the 

velocity N for the propagation of a weak shock wave we derive 

&,fdt=f/s(U*+1-b) 

The solution which is being examined does not depend on time, 
This leads to (5.10). 

~tegration of equation (5.7) gives the following relatio~hip 

i.e. dr,/ dt I: 0 

This equation is applicable to the discription of both completely dispersed shock waves 
and also waves with incomplete dispersion. 

The problem of shock wave structure is treated somewhat differently in [133, 
Many of the results presented in this paper were obtained Inde~ndently by V,V. Lunev 

to whom the author expresses his sincere appreciation for extended discussions. 
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Properties of the solutions of the Emden-Fowler equation the nonlinear term of 

which contains the unknown function raised to a negative power, are determi- 
ne& Boundary value problems in which one of the conditions corresponds to the 

requirement that the solution be bounded when the argument is equal to zero 
or infinity (this requirement occurs in a number of problems in mechanics) are 

also considered. These boundary value problems may have any number, or 
even an enumerable set of solutions, the latter case characterized by the dep- 
endence of these solutions on a parameter of an unusual form. 

For n > 0 (n is the power in which the unknown function appears in the non- 

linear term) the Emden-Fowler equation has been studied exhaustively in [l. 21. 
The problems of electrohydrodynamics and nonlinear magnetoelasticity leading 

to the Emden-Fowler equation with ra = -2, were studied in [3 - 51. The pre- 
sent paper deals with yet another problem, namely that of equilibrium of heavy 

filaments through which a current flows. This problem leads to the case of 
n =; -1 and the nonlinear term may be positive or negative, depending on 

whether the filaments attract or repel each other. 

I, Reduction to an autonomous system and 
solutions. The Emden-Fowler equation has the form Cl] 

properties of its 

(1 .I) 


